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ABSTRACT
Higher-order topological insulator (HOTI) states, such as two-dimension (2D) HOTI featured with
topologically protected corner modes at the intersection of two gapped crystalline boundaries, have
attracted much recent interest. However, the physical mechanism underlying the formation of HOTI states
is not fully understood, which has hindered our fundamental understanding and discovery of HOTI
materials. Here we propose a mechanistic approach to induce higher-order topological phases via structural
buckling of 2D topological crystalline insulators (TCIs). While in-plane mirror symmetry is broken by
structural buckling, which destroys the TCI state, the combination of mirror and rotation symmetry is
preserved in the buckled system, which gives rise to the HOTI state. We demonstrate that this approach is
generally applicable to various 2D lattices with different symmetries and buckling patterns, opening a
horizon of possible materials to realize 2DHOTIs.TheHOTIs so generated are also shown to be robust
against buckling height fluctuation and in-plane displacement. A concrete example is given for the buckled
β-Sb monolayer from first-principles calculations. Our finding not only enriches our fundamental
understanding of higher-order topology, but also opens a new route to discovering HOTI materials.

Keywords: higher-order topological insulators, structural buckling, rotation-reflection symmetry, buckled
honeycomb antimony monolayer

INTRODUCTION
The discovery of topological insulators (TIs) [1,2]
has inspired extensive exploration of other novel
topological states, such as the TCIs [3,4], and more
recently HOTIs [5–18]. In general, the character-
istic properties of these topological states are well
understood. The TIs and TCIs have a gapped d-
dimensional bulk and topologically protected gap-
less states on d-1 dimensional boundaries, while the
HOTIs (n-th orderTIswith 1 < n ≤ d) have a sim-
ilar gapped bulk, but the gapless states emerge not
at d-1 but at lower d-n dimensions. For example, a
second-order HOTI in 2D hosts topological states
located at its 0D corners between distinct gapped
1D edges. Moreover, the physical mechanism un-
derlying the formation of TIs and TCIs is also well
understood, and generally involves a band inversion
process. Accordingly, abundant TI/TCI materials
have been discovered and/or proposed based on
this mechanism, through band inversions induced
by, for example lattice/orbital symmetry [19–21],
quantum-well structure [22], strain [23] and surface
adsorption/growth [24,25], etc. On the contrary,

the physical mechanism underlying the formation of
HOTIs is less clear.This knowledge gap has not only
lessened our fundamental understanding of HOTI
states, but also inevitably hindered our ability to dis-
cover HOTI materials. So far, only very few candi-
date materials have been theoretically proposed to
host 2D HOTI states, including phosphorene [26],
graph(di)yne [27–29] and twisted bilayer graphene
or boron nitride at special angles [30,31].

In this work, we reveal a generic physical mech-
anism of transforming a 2D TCI state into a HOTI
state via structural buckling. It has been previously
shown that structural buckling provides a key degree
of freedom to tailor materials’ properties [32], such
as thermal conductivity [33], magnetic response
[34] and spin-orbit interaction [35]. Structural
buckling can also facilitate the well-known band
inversion mechanism to induce topological tran-
sition of TI states [24,36,37]. But our finding here
is mechanistically different. In general, structural
buckling, which breaks the in-plane mirror sym-
metry (Mz), would destroy the Mz-protected
TCI states in 2D planar lattices. However, we
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Figure 1. Comparison of electronic structures between planar and buckled square lattices. (a) Illustration of structural buck-
ling. The color (red/green) marks atomic buckling direction (upwards/downwards). The buckling height is h = 0.2a , with a be-
ing the bond length. Bulk band structures of (b) the planar and (f) buckled square lattices. For comparison, both band structures
are calculated using two-atom unitcells. The parameters used here are εx ,y = −1.88, εz = −0.88, V ppσ = 0.5, V ppπ =
−0.15, and λ = 1.25 eV. Band structure of nanoribbons of (c) the planar and (g) buckled square lattices. Energy spectrum
of square nanodisks of (d) the planar and (h) buckled square lattices. Spatial intensity distribution |ψ (r)|2 of topologically
protected (e) edge states of the planar square lattice and (i) corner modes of the buckled square lattice.

realize that topological gapless states of TCIs are
gapped out differently between adjacent edges
of different orientations subject to the remaining
combination of mirror and rotation symmetry
(Sn = MzCn). Consequently, a HOTI with topo-
logical corner states will emerge ubiquitously.
Moreover, we found that even an approximate Sn
symmetry suffices for the existence of HOTI: the
0D topological corner states are robust against
buckling height fluctuation and symmetry breaking
perturbations. We further demonstrate that this
newly discovered structural buckling approach is
generally applicable to various lattices with different
symmetry and buckling patterns, which greatly
extends possible material choices to realize HOTIs.
Finally, we calculate from first-principles the HOTI
state in the buckled β-Sb honeycomb monolayer as
a concrete material example.

RESULTS
HOTI in a buckled square lattice
To illustrate the structural buckling induced higher-
order topology, we first take the mirror-protected
TCI state in a square lattice as an example. Figure 1
shows the electronic structures of the planar square
lattice and the buckled square lattices with buckling

height h = 0.2a (where a is the bond length), re-
spectively. The orbital-resolved band structures of
both systems exhibit signatures of a band inversion
between pz and px,y orbitals around the � point
(see Fig. 1b and f), implying their nontrivial elec-
tronic topology. To identify the TCI state in the pla-
nar square lattice, we calculated the mirror Chern
number Cm = 2, which guarantees the existence of
topological edge states, as displayed in Fig. 1c–e. It
is noted that the bulk band structures of the planar
and buckled structures are similar to each other ex-
cept for slight band splitting, as shown in Fig. 1b
and f. However, the edge state changes dramatically
after the structural buckling. As shown in Fig. 1g,
the topological edge states are clearly gapped, in-
dicating that the TCI state is destroyed because of
the structural buckling induced mirror symmetry
breaking. By further studying the energy spectrum
of the finite square disk for the buckled lattice, we
find that there are eight states (marked as red dots)
around the Fermi level within the edge-gap region
(light-red area) of the buckled system, as shown in
Fig. 1h. Remarkably, from spatial intensity distri-
bution |ψ(r)|2, we further find that these midgap
states are localized on four corners of the sample
(see Fig. 1i), which is distinct from the topologi-
cally protected extended edge states along thewhole
perimeter of TCIs (see Fig. 2e).This implies that the
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Figure 2. (a) A buckled square lattice with buckling height fluctuation. The red (green)
dots represent upwards (downwards) buckled atoms, the size of dots denote random
buckling amplitudes within [0, 0.1a ], with a being the bond length. (b) Energy spectrum
of a square disk of the buckled square latticewith random buckling heights. Insets show
the spatial intensity distribution |ψ (r)|2 of in-gap corner states.

buckled system is a HOTI. As a result of the time-
reversal symmetry, corner modes always appear in
pairs (Kramers pair) [8]. Therefore, there are a to-
tal of eight corner modes in the disk of the buck-
led square lattice, which is different from previously
studied spinless HOTIs [27–29].

k · p analysis
To further verify the nontrivial higher-order topo-
logical nature, we performed k � p analysis and de-
rived an edge theory for the buckled square lattice
(see Supplementary data). First, we derived the ef-
fective Hamiltonian for the planar square lattice as

H = (
m0 − m1k2

)
σzτ0 + v1

(
k2x − k2y

)
σxτz

− v2kxkyσyτ0,

where m0,m1, v1 and v2 are parameters. τz =
±1 denotes two mirror sectors and σz = ±1 de-
notes basis states. As the structural buckling breaks
the mirror symmetry Mz, an extra term which
mixes two mirror sectors was added into the above
Hamiltonian,

Hb = vbσy(kxτx + kyτy ).

We then derived the effective Hamiltonian of the
1D edge states with valleys at±k0 along the edge

Hedge = v(k ± k0)s z ± mbs y ,

where v is the velocity of the edge states, s x,y ,z is
Pauli matrix and k is the momentum in the 1D Bril-
louin zone of the edge. The last term is the struc-
tural buckling induced mass term which gaps out

the topological Dirac edge states. The 1D massive
Dirac edge spectrum admits a Z2 classification de-
pending on the sign of the mass term. As the struc-
tural buckling breaks Mz but preserves S4 = MzC4
symmetry, the mass term changes sign alternatively
between adjacent edges following the S4 symmetry
in the buckled square lattice. Consequently, 0D cor-
ner states arise as the topological domain-wall state
between two edges belonging to distinct topolog-
ical classes according to the Jackiw-Rebbi mecha-
nism [38]. Furthermore, themass term is odd under
the vertical diagonal mirror symmetry Md or Md̄ ,
which guarantees the emergence of topological cor-
ner states at the intersection of two edges related by
the diagonal mirror symmetry.

Alternatively, an intuitive argument of the
structural buckling induced nontrivial higher-order
topology can bemade by utilizing the vertical mirror
symmetry, following the approach by Langbehn
et al. [7]. As the buckled square lattice is mirror
symmetric under Md (see Fig. 1a), one can divide
the wave functions in the intersection line (M-�-M)
between the diagonal mirror plane and the 2D
Brillouin zone into two separate sets with opposite
Md eigenvalues (±i ). For each set, one can evaluate
its Zak phase [39] through the cell-periodic Bloch
function u±i (k):

ϕ±i = i
∮

〈u±i (k) |∂k | u±i (k)〉dk,

which is essentially related to the mirror-grad wind-
ing number for the 1D effective Hamiltonian in the
mirror-invariant line. As the Zak phase represents
the electric polarization for the mirror subspace of
the 1D system, the calculated Zak phase ϕ±i = π

indicates the presence of end modes at corners be-
tween two edges connected by Md , as shown in
Fig. 1i. This implies the system is a second-order TI
[40].

As the chiral (sublattice) symmetry is preserved
in the simplified model, the bulk band topology dis-
cussed above also suggests the coexistence of a frag-
ile TCI phase [12], which would give rise to gapless
edge states only along the smooth Md -preserving
edge. However, such a gapless edge state can be eas-
ily destroyed by breaking the sublattice symmetry
such as via a staggered potential, which also breaks
the S4 symmetry. In contrast, the topological corner
states are much more robust against such perturba-
tions (see Supplementary data).

Robustness against buckling
height fluctuation
We checked the robustness of topological corner
states against buckling height fluctuation. Instead of
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Figure 3. HOTIs in other lattices with structural buckling. Energy spectrum of finite nanodisks of (a) FeSe-type tetrahedral-buckled square lattice,
(b) buckled snub square lattice, (c) distorted Lieb lattice, (d) truncated square lattice, (e) octahedral-buckled trigonal lattice, (f) buckled honeycomb
lattice, (g) buckled snub hexagonal lattice, (h) buckled ruby lattice. The parameters are presented in Supplementary data. Left inset in each panel shows
the top and side views of lattice structures where the color (green/red) marks atomic buckling direction (upwards/downwards). Right inset in each panel
shows the spatial distribution |ψ (r)|2 of topologically protected corner modes.

uniformly buckling with the same height, random
buckling heights within [−h/2, h/2] were consid-
ered in the buckled square lattice (see Fig. 2a).
In comparison with Fig. 1h, the energy levels of
four pairs of corner states split slightly, as shown in
Fig. 2b. However, different from the case with uni-
form buckling height, the wavefunctions of the cor-
ner states are asymmetric among four corners, that
is each pair of corner states mainly localized on one
corner (see insets of Fig. 2b).Therefore, these in-gap
topological corner states are rather robust against
random buckling height fluctuation. In addition, we
also found that topological corner states are robust
against weak in-plane random displacements (see
Supplementary data). This confirms that as long as
the S4 symmetry is roughly overall preserved, the
topological corner state is preserved, which greatly
eases its experimental realization.

HOTIs in other buckled lattices
In addition to the case study discussed above, we
also considered other lattices with different buck-
ling forms. Notably, we considered another buck-
led square lattice with a FeSe-type tetrahedral buck-
ling which consists of four atoms per unitcell (see
left inset of Fig. 3a). As the S4 symmetry is retained
in the tetrahedral-buckled square lattice, this system
is also a HOTI, which is characterized by the exis-

tence of eight corner modes around the Fermi level
in the energy spectrum of its square nanodisk, as
shown in Fig. 3a. This indicates that the physical
mechanism of realizing HOTIs via structural buck-
ling also works in square lattices with different buck-
ling forms. In fact, it is expected to be generally ap-
plicable to other lattices with different symmetries.
To confirm this, we further investigated the buckled
snub square, distortedLieb, truncated square lattices
with S4 symmetry as well as the buckled trigonal,
honeycomb, ruby, and snub hexagonal lattices with
S6 symmetry (see Supplementary data for more de-
tails).According to the energy spectrumanalysis, the
square (hexagonal) nanodisks support eight (12)
corner states around the Fermi level, as shown in
Fig. 3b–h. The spatial distribution of these states
also clearly demonstrates that they are localized at
corners of nanodisks (see insets of Fig. 3). Because
of the finite-size-effect-induced weak coupling be-
tween adjacent corners, there exists slight energy
splitting for these corner states around the Fermi
level, which is exponentially suppressed with the
increasing nanodisk size. Overall, the structural-
buckling mechanism is general and is applicable to
various systemswith different symmetries and buck-
ling patterns. Given that various 2DTCIs have been
found previously, our proposed approach greatly ex-
tends the range of candidate materials for realizing
HOTIs.
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Figure 4. HOTI in the buckled β-Sb honeycomb monolayer. (a) Bulk band structures of the buckled honeycomb lattice of
Sb without (gray dashed line) and with SOC (red solid line). As the effect of SOC is weak according to the bulk bands, the
calculations of nanoribbons and nanodisks are performed without SOC. (b) Band structure of a nanoribbon of the buckled
Sb monolayer without SOC. (c) Energy spectrum of a hexagonal-shaped nanodisk with H-saturated edges for the buckled Sb
monolayer. The inset shows the real-space charge distribution of corner states around the Fermi level.

Material example
Finally, we took the β-Sb monolayer as a concrete
material manifestation. A β-Sb monolayer that has
been experimentally synthesized [41–44], crystal-
lizes in a buckled honeycomb lattice with two Sb
atoms per unitcell. The naturally buckled Sb hon-
eycomb lattice was previously found to be a triv-
ial insulator, but would become a mirror-protected
TCI in its planar structure under an in-plane tensile
strain [37]. Here we show that a variety of topolog-
ical phases can be realized in the Sb monolayer by
varying the degree of structural buckling. Based on
first-principles calculations, we found a HOTI state
in the natively buckled β-Sb monolayer. As shown
in Fig. 4a, the buckled Sb honeycomb lattice is an
insulator with an energy gap of ∼1.1 eV. As the ef-
fect of the spin-orbit coupling (SOC) on bulk band
structures is weak, hereafter we performed calcula-
tions of nanoribbons and nanodisks without SOC,
unless otherwise specified. Interestingly, we found
a flat edge state in the energy gap of nanoribbons
(see Fig. 4b), implying a possible topological effect.
To further identify its higher-order topology, we cal-
culated a hexagonal-shaped nanodisk of the buck-
led Sb honeycomb lattice. Evidently, there are six
(12 if spin is counted) states around the Fermi level
and these states are localized at corners as shown in
Fig. 4c, confirming the existence of topological cor-
ner states. Moreover, by scanning the evolution of
band topology with the buckling height, we found a
quantum spin Hall state in the intermediate region
between the planarTCIphase and thenatively buck-
led HOTI phase (see Supplementary data). This in-
dicates that the structural buckling significantly af-
fects the band topology of the Sb monolayer. As dif-
ferently buckled Sb monolayers can be epitaxially

grown on various substrates [42–45] and/or con-
trolled by external strains, one, therefore, expects to
observe rich topological physics in Sb monolayers
with tunable structural buckling.

CONCLUSION
In conclusion, we have revealed a generic physi-
cal mechanism of structural buckling underlying the
transition from the mirror-protected TCI to HOTI
state in 2D materials. The topological corner states
of theHOTIs are robust against bucklingheight fluc-
tuation and similar HOTIs are demonstrated in var-
ious buckled lattices with S4 or S6 symmetry. By tak-
ing advantageof thebroadmaterial categories of pre-
viously studied 2D TCIs, such as films of SnTe fam-
ily compounds [46], our finding opens a new route
towards discovering HOTIs with a wealth of pos-
sibilities, which is expected to draw immediate ex-
perimental attention. For example, new candidate
materials of HOTIs with similar buckled structures
are expected to be predicted by utilizing the high-
throughput computation of 2Dmaterials.The struc-
tural buckling mechanism may also work in 3D to
stimulate the realization of 3D HOTIs. For exam-
ple, by stacking these 2DHOTIswith interlayer cou-
pling to form 3D HOTIs, or by applying strains to
realize HOTIs via lateral lattice expansion accompa-
niedwith buckling reduction [47] and structural dis-
tortions in 3Dmaterials [9]. Our discoverymay also
shed light on the exploration of higher-order topol-
ogy in other fields such as phononic, photonic, mi-
crowave and electrical circuit systems.
Note: After submission, we become aware of an-
other work [15] studying the higher-order topolog-
ical phase in buckled group-V honeycomb lattices.
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METHODS
Tight-binding model
We considered a general tight-bindingmodel for 2D
lattices with three $p$ orbitals per site.TheHamilto-
nian is given by

H =
∑
i,μ

εμc
†
iμ · ciμ +

∑
〈i, j 〉,μ

c†iμTi, j c jμ

+ iλ
∑
i,μν

(
c†iμ × ciν

)
· sμν,

where c†iμ = (c †i px , c
†
i py , c

†
i pz)μ and ciμ =

(c i px , c i py , c i pz)Tμ are electron creation and annihi-
lation operators with spin μ( = ↑, ↓) at the i-th
site, respectively. εμ = (εx , εy , εz)μ are the on-site
energies for the three p orbitals. λ is the spin-orbit
coupling (SOC) strength and s = (σx , σy , σz)
are the Pauli matrices. Ti, j = [tαβ(ri j )]3×3 is a
3 × 3 matrix containing Slater-Koster hopping
integrals tαβ(ri j ), which depends on the orbital
type (α, β = px , py , pz) and the intersite vector
ri j from site i to j. Previously, it was known that
by considering a band inversion between px,y and
pz orbitals, mirror-protected TCI states could be
realized in various 2D planar lattices [48]. Here we
illustrate that by structural buckling these TCIs can
be intriguingly driven into HOTIs.

DFT calculation
The first-principles calculations were performed
within the framework of density functional theory
using the Vienna ab initio simulation package [49]
with the Perdew-Burke-Ernzerhof-type generalized
gradient approximation [50] in the projector aug-
mentedwavemethod.Adefault kinetic energy cutoff
is adopted in all calculations. A 30 × 30 × 1, 10 ×
1 × 1 and single�-centered k-mesh of the Brillouin
zone sampling are used for the bulk, nanoribbon
and nanodisk calculations, respectively. The lattice
constant for the buckled Sb honeycomb lattices is
4.21 Å, and the buckling height is 1.6 Å. Nanorib-
bons with ∼80 atoms per unitcell and nanodisks
with ∼400 atoms are calculated to show the edge
states and corner states, respectively.

SUPPLEMENTARY DATA
Supplementary data are available atNSR online.
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14. Schindler F, Brzezińska M and Benalcazar WA et al. Fractional
corner charges in spin-orbit coupled crystals. Phys Rev Res 2019;
1: 033074.

15. Radha SK and Lambrecht WRL. Buckled honeycomb antimony:
higher order topological insulator and its relation to the Kekulé
lattice. Phys Rev B 2020; 102: 115104.

Page 6 of 7

D
ow

nloaded from
 https://academ

ic.oup.com
/nsr/article/9/8/nw

ab170/6367103 by U
niversity of U

tah user on 09 N
ovem

ber 2022

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwab170#supplementary-data
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/PhysRevLett.106.106802
http://dx.doi.org/10.1146/annurev-conmatphys-031214-014501
http://dx.doi.org/10.1146/annurev-conmatphys-031214-014501
http://dx.doi.org/10.1126/science.aah6442
http://dx.doi.org/10.1103/PhysRevB.96.245115
http://dx.doi.org/10.1103/PhysRevLett.119.246401
http://dx.doi.org/10.1103/PhysRevLett.119.246401
http://dx.doi.org/10.1103/PhysRevLett.119.246402
http://dx.doi.org/10.1126/sciadv.aat0346
http://dx.doi.org/10.1038/s41567-018-0224-7
http://dx.doi.org/10.1103/PhysRevLett.120.026801
http://dx.doi.org/10.1103/PhysRevLett.121.116801
http://dx.doi.org/10.1103/PhysRevLett.123.186401
http://dx.doi.org/10.1103/PhysRevResearch.1.033074
http://dx.doi.org/10.1103/PhysRevB.102.115104


Natl Sci Rev, 2022, Vol. 9, nwab170

16. Xu Y, Song Z and Wang Z et al. Higher-order topology of the axion insulator
EuIn2As2. Phys Rev Lett 2019; 122: 256402.

17. Liu F, Deng H-Y and Wakabayashi K. Helical topological edge states in a
quadrupole phase. Phys Rev Lett 2019; 122: 086804.

18. Trifunovic L and Brouwer PW. Higher-order bulk-boundary correspondence for
topological crystalline phases. Phys Rev X 2019; 9: 011012.

19. Kane CL and Mele EJ. Z2 topological order and the quantum spin Hall effect.
Phys Rev Lett 2005; 95: 146802.

20. Kane CL and Mele EJ. Quantum spin Hall effect in graphene. Phys Rev Lett
2005; 95: 226801.

21. Wang Z, Jin K-H and Liu F. Quantum spin Hall phase in 2D trigonal lattice.
Nat Commun 2016; 7: 12746.

22. Bernevig BA, Hughes TL and Zhang S-C. Quantum spin Hall effect and topolog-
ical phase transition in HgTe quantum wells. Science 2006; 314: 1757–61.

23. Liu Y, Li Y and Rajput S et al. Tuning Dirac states by strain in the topological
insulator Bi2Se3. Nat Phys 2014; 10: 294–9.

24. Zhou M, Ming W and Liu Z et al. Epitaxial growth of large-gap quantum spin
Hall insulator on semiconductor surface. Proc Natl Acad Sci USA 2014; 111:
14378–81.

25. Reis F, Li G and Dudy L et al. Bismuthene on a SiC substrate: a candidate for a
high-temperature quantum spin Hall material. Science 2017; 357: 287–90.

26. EzawaM.Minimal models forWannier-type higher-order topological insulators
and phosphorene. Phys Rev B 2018; 98: 045125.

27. Liu B, Zhao G and Liu Z et al. Two-dimensional quadrupole topological insulator
in γ -graphyne. Nano Lett 2019; 19: 6492–7.

28. Lee E, Kim R and Ahn J et al. Two-dimensional higher-order topology in mono-
layer graphdiyne. npj Quantum Mater 2020; 5: 1.

29. Sheng X-L, Chen C and Liu H et al. Two-dimensional second-order topological
insulator in graphdiyne. Phys Rev Lett 2019; 123: 256402.

30. Park MJ, Kim Y and Cho GY et al. Higher-order topological insulator in twisted
bilayer graphene. Phys Rev Lett 2019; 123: 216803.

31. Liu B, Xian L and Mu H et al. Higher-order band topology in twisted moiré su-
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